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Abstract

3D semantic segmentation is crucial for comprehending
transmission line structure and environment. This under-
standing forms the basis for a variety of applications, such
as automatic risk assessment of line tripping caused by wild-
fires, wind, and thunder. However, the performance of cur-
rent 3D point cloud segmentation methods tends to degrade
on imbalanced data, which negatively impacts the overall seg-
mentation results. In this paper, we proposed an imBalanced-
Aware Long-Range 3D Semantic Segmentation framework
(iBALR3D) which is specifically designed for large-scale
transmission line segmentation. To address the unsatisfactory
performance on categories with few points, an Enhanced Im-
balanced Contrastive Learning module is first proposed to im-
prove feature discrimination between points across sampling
regions by contrasting the representations with the assistance
of data augmentation. A structural Adaptive Spatial Encoder
is designed to capture the distinguish measures across differ-
ent components. Additionally, we employ a sampling strategy
to enable the model to concentrate more on regions of cat-
egories with few points. This strategy further enhances the
model’s robustness in handling challenges associated with
long-range and significant data imbalances. Finally, we intro-
duce a large-scale 3D point cloud dataset (500KV3D) cap-
tured from high-voltage long-range transmission lines and
evaluate iBALR3D on it. Extensive experiments demonstrate
the effectiveness and superiority of our approach.

Introduction
3D point cloud semantic segmentation is an important
task that classifies all points into their corresponding cate-
gories (Landrieu and Simonovsky 2018). The potential of
implementing associated technologies in large-scale electri-
cal grids is substantial. However, the research progress in the
power grid domain is still relatively limited, primarily due to
the scarcity of well-labelled data.

More specifically, there are a few unique challenges in
electrical grid applications (e.g., risk assessment and pre-
diction under different weather conditions). The high de-
mand for accuracy in transmission line segmentation is one
primary aspect. The segmentation output will be utilized
to simulate the actions of insulators or jumper wires un-
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Figure 1: We introduce a novel 500KV3D dataset.
500KV3D is a large-scale long-range 3D point cloud
dataset, which is collected from a high voltage-level, 500KV
smart-grid infrastructure. (a) illustrates a few distant views
and (b) is the zoomed in view. We consider 500KV3D could
provide more insights into deploying multimedia models in
electrical grids-related topics. Details and statistical analysis
are provided in 500KV3D Dataset Section .

der varying wind speeds. It can also be applied to mea-
sure the probability of wildfire-induced tripping on trans-
mission lines. All the applications rely heavily on precise
labels. Particularly, the data imbalance issue in the domain
poses an inevitable challenge (Zhang 2024). General seman-
tic segmentation algorithms usually assume a roughly bal-
anced number of points from different categories. However,
these assumptions do not hold in the context of transmission
line data, leading to biased results and inaccurate representa-
tions. Furthermore, transmission lines usually contain long-
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Figure 2: Framework of our iBALR3D model. A long-range and imbalanced aware sampling strategy is deployed to balance
the significant data imbalanced issue and align point clouds in the long-range distance. An adaptive spatial encoder is designed
to extract indistinguishable junctional regions across simple shapes. A contrastive training associated with an augmentation
module is used to enhance the learning capacity of tail categories and achieve overall highest performance.

range structures. To this end, the model should be capable of
extracting both the long-range global structural information
as well as the trivial local differences to obtain accurate and
consistent global performance.

Addressing these challenges is key to further process seg-
mentation. Notably, Javier Grandio et al. (Grandio et al.
2023) developed a multi-modal method for railway infras-
tructure point clouds, focusing on panoptic segmentation
of linear and pole-like objects. Daniela Lorena Lamas et
al. (Lamas et al. 2021) introduced an innovative algorithm
that leverages geometry and spatial context, enhancing seg-
mentation in railway environments (e.g., rails, masts, wiring,
droppers, traffic lights, and signals). Additionally, Jingru
Wang et al. (Wang et al. 2022) proposed a robust method
for segmenting point cloud data of communication towers
and accessory equipment based on geometrical shape con-
text from 3D point cloud.

In this paper, we present an imBalanced-Aware Long-
Range 3D Semantic Segmentation framework (iBALR3D)
which is specifically engineered to tackle the challenges
inherent in transmission line applications. To validate the
effectiveness of the proposed model, a large-scale, high-
quality, and well-organized point cloud dataset, named
500KV3D is introduced. 500KV3D is collected from ex-
tremely high-voltage (i.e., 500KV) power transmission
lines. The dataset is well labelled by technicians. Exten-
sive experiments demonstrate the effectiveness of the pro-
posed modules especially for categories with few points.
Our method achieves leading performance across all estab-
lished baselines. The main contributions are as follows:

• An Enhanced Imbalanced Contrastive Learning module
is proposed, which improves the representation effec-
tively by contrasting the features across categories in a
supervised fashion.

• An Adaptive Spatial Encoding is designed, which implic-
itly aligns object shape knowledge as well as its context.

• A strategy called Long-Range and Imbalanced Sampling
is introduced. It addresses the data imbalance issue dur-
ing training and aligns points over long-range distances.

• A large-scale, high-quality, and well-organized point

cloud dataset of transmission lines is introduced to val-
idate the effectiveness of our approach.

Related work
Point cloud semantic segmentation, a key task in computer
vision, classifies points in a 3D cloud into specific cate-
gories. With the advancements in deep learning and 2D vi-
sion algorithms, deep learning-based approaches have out-
performed traditional methods in semantic segmentation
tasks. These methods generally fall into point-based, voxel-
based, graph-based, and transformer-based categories.
Point-Based Methods have emerged as a popular approach
due to their ability to directly process raw point clouds.
(Li, Liu, and Gall 2020) reformulated point-based methods
to operate in the projection space, which significantly im-
proved the efficiency of processing LiDAR point clouds. (Hu
et al. 2020a) proposed an efficient and lightweight neural
architecture to directly interpret point semantics for large-
scale point clouds. Similarly, (Park et al. 2023) designed a
self-positioning point-based transformer that shows promis-
ing results in point cloud understanding. Other classical re-
search includes (Garcia-Garcia et al. 2016; Ni et al. 2020;
Thomas et al. 2019; Liu et al. 2019; Chiang et al. 2019; Wu,
Qi, and Fuxin 2019; Mao, Wang, and Li 2019; Hu et al.
2020b). Although Point-based methods are capable of di-
rectly processing raw point clouds, making them efficient
and straightforward in their approach, most of these meth-
ods can struggle with large-scale point clouds due to high
computational costs. They may also have difficulty handling
the irregularity and sparsity of point clouds, which can lead
to less accurate segmentation results.
Voxel-Based Methods usually convert point clouds into a
voxel grid, which allows for the deployments of 3D convo-
lutional neural networks. DRINet++ (Ye et al. 2021) jointly
learns the sparsity and geometric properties of a point cloud
with a voxel-as-point principle. (Ye et al. 2022) introduced a
Geometry-aware Sparse Network (GASN) which leverages
the sparsity and geometric properties of point clouds within
a unified voxel representation. HilbertNet (Chen et al. 2022)
preserves the benefits of voxel-based methods while signifi-



cantly reduced computational costs through a Hilbert curve-
based flattening mechanism. (Hou et al. 2022) proposed a
teacher-student strategy, which eventually using a small net-
work to do LiDAR semantic segmentation for efficient refer-
ence. Voxel-based methods are usually effective in handling
large and complex point clouds. However, the voxelization
process can lead to information loss, which may decrease
segmentation accuracy. Additionally, these methods are also
computationally expensive.
Graph-Based Methods consider point clouds as graphs,
where each point is a node, and the edges represent the rela-
tionships between the points. (Wang et al. 2019a) introduced
an attention mechanism into the graph convolution process,
thereby improving the model’s capacity to concentrate on
crucial points. (Landrieu and Simonovsky 2018) introduced
a new framework for semantic segmentation of large-scale
point clouds using superpoint graphs and graph convolu-
tional networks, which captured the organization and con-
text of 3D point clouds by partitioning them into geometri-
cally homogeneous elements. (Jiang et al. 2019) presented
a method that utilized point and edge features in a hierar-
chical graph framework to label 3D scenes with semantic
categories. (Yan et al. 2020) proposed PointASNL, which
processes noisy point clouds robustly using adaptive sam-
pling and local-nonlocal modules. Other research works in-
clude (Wang et al. 2019c; Li et al. 2019; Wang et al. 2019b).
Graph-based methods are proficient at identifying relation-
ships in point data and work well with clear graph struc-
tures. However, they can be computationally heavy due to
complex graph construction and processing, and their per-
formance can depend on the chosen parameters.
Transformer-Based Methods. Transformer-based meth-
ods (Zhao et al. 2021) are gaining attention for their profi-
ciency in capturing long-range data dependencies. Xin Lai
et al. (Lai et al. 2023) proposed a stratified strategy for
sampling keys to harvest long-range contexts, demonstrat-
ing the potential of transformers in this field. SPFormer (Sun
et al. 2022) is a method that clusters potential features from
point clouds into larger units called superpoints. It then
uses query vectors to directly predict instances, eliminating
the need for reliance on object detection or semantic seg-
mentation results. (Xiu et al. 2022) further extended the
transformer-based methods by introducing an interpretable
edge enhancement and suppression learning mechanism.
Transformer-based methods are adept at handling complex
point cloud segmentation by capturing long-range data de-
pendencies. However, they are computationally intensive,
require significant memory, and need ample training data,
which can be problematic when labelled data is scarce.

500KV3D Dataset
We present the 500KV3D dataset, a large, high-quality, and
well-structured point cloud dataset collected from 500KV
power transmission lines using drones with 3D Li-DAR
sensors. The dataset has been meticulously processed and
checked for quality. It serves as a valuable asset for the en-
ergy industry and a practical case study for evaluating 3D
applications. We discuss the data collection procedures and

Table 1: Specifications of LiDAR Sensor LiAir 220N, which
is used to colloect our 500KV3D dataset.

Performance Specifications

Laser Sensor Hesai Pandar40P
Range Accuracy ±20 mm
Detection Range 200 m @ 10% reflectance
Channels 40
Power Consumption 27 W
System Accuracy ± 5 cm

analysis results in this section. A sample from the 500KV3D
dataset is illustrated in Figure 1.

Data Collection
Due to the extremely high-voltage level, the power lines are
usually in high and inaccessible locations which leads dif-
ficulties to in scanning all the structural details from the
ground. To this end, a powerful drone is utilized to carry
a LiDAR sensor in the air, to capture even the tiny objects
of the system, such as thin power lines. The LiDAR system
is LiAir 220N, which is a lightweight LiDAR survey instru-
ment manufactured by GreenValley International (GVI) 1. It
is specifically designed for mounting on drones (Unmanned
Aerial Vehicle, UAVs). The system is equipped with a He-
sai Pandar40P laser scanner 2, making it one of the most
cost-effective options in GVI’s LiAir Series. More detailed
configurations are listed in Table 1.

Pre-processing
Despite using professional LiDAR sensors, outliers and
noise is inevitable due to varying reflectivity properties and
atmospheric interference. We use Radius and Statistical Out-
lier Removal techniques, followed by a manual inspection
for noise reduction. The final raw dataset includes the (x, y,
z) coordinates of each point.

Labeling
We consider 6 semantic categories as the critical and dom-
inant categories for power transmission applications. More
specifically, 1) Conductor lines denote quadruple split con-
ductors that carry the electrical waves from the transmitters
to the receivers; 2) Ground wires are used to protect the con-
ductors from lightning strikes. They are usually the wires
installed above conductor lines; 3) Insulators include the I-
type, the II-type, and the V-type insulators which are the ma-
terials that prevent the electric current from flowing from the
conductors to the ground or other objects; 4) Jumper wires
are the quadruple split jumper wires that are used to con-
nect the conductors on the poles or towers to the insulators
or other equipment; 5) Power towers are three or four-circuit
pole towers that support the entire transmission system over-
head. It carries electric current from the power plants to
the substations and consumers; 6) Vegetation are considered
as any ground objects which contain trees, shrubs, hedges,
bushes, etc. To streamline the labour-intensive process of

1https://globalgpssystems.com/liair-220n/
2https://www.hesaitech.com/product/pandar40p/



manual annotation for the entire point cloud data, we employ
clustering algorithms to segment the data into regions. Sub-
sequently, a manual correction procedure is implemented to
refine and validate the annotation results, ensuring consis-
tency and quality. CloudCompare 3 is used for conducting
the annotation which is an open-source point cloud process-
ing tool. The entire dataset took approximately 200 working
hours for data pre-processing and labelling.

Our collection has 29M labelled points across 42 sections.
We train on 34 sections and test on 8, with distances between
towers ranging from 100 to 800 meters and point scales per
segment from 10k to almost 2M.

Statistical Analysis
To help users better understand our dataset, more statisti-
cal details are provided in this section. Due to the nature
of the transmission system, a few categories dominate the
dataset,which leads to considerable imbalanced data distri-
bution. In Figure 3, we illustrate the number of the point dis-
tribution across 42 sections of different categories via box-
plot. More quantitative numbers are listed in Table 2. We can
observe that some primary semantic categories (e.g., vege-
tation) constitute over 90 percent of the total points. In con-
trast, the less prevalent but crucial categories, such as jumper
wires, ground wires, and insulators make up only 0.19%,
0.27%, and 0.32% respectively of the total points. This data
reflects the complexity of the real-world transmission line
environment and reveals a significant imbalance in the dis-
tribution of semantic classes, underscoring the difficulties
in applying existing segmentation approaches universally. In
addition, the elevation or height of the points across differ-
ent categories are an important characteristic. In Figure 4,
the histogram of the point cloud elevation is visualized. Note
that most transmission system components have higher ele-
vation, and due to the sparsity of these components, the dis-
tribution is various.

In summary, we consider 500KV3D to be a general and
practical point cloud dataset which is collected from real-
world civil engineering infrastructure. We hope it could con-
tribute more on related research communities.

Our Method
There are three main modules in our iBALR3D method, in-
cluding Enhanced Imbalanced Contrastive Learning, Adap-
tive Spatial Encoding, and Long-range and Imbalanced
Sampling. More details are introduced in this section below:

Enhanced Imbalanced Contrastive Learning
The significant imbalanced data distribution leads to the dif-
ficulty for the model to learn the distinctive structural char-
acteristics across the tail categories. To this end, an enhanced
and supervised contrastive learning strategy is proposed. Its
objective is to force the model to differentiate categories.
To further enhance the model learning effectiveness in the
imbalanced data scenario, a data augmentation strategy is
deployed, which increases the sample numbers of the tail
categories.

3https://www.danielgm.net/cc/
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Figure 3: Point number distribution analysis of our
500KV3D dataset. All points are separated into 42 sections,
the box plots illustrate and point number distributions across
different semantic categories as well as different sections.

We initialize a possibility for each point in a scene based
on Long-Range and Imbalanced Sampling strategy intro-
duced in section 4.2, and we pick a point as the center
point according to the generated possibility. Then, we select
a sampled region x by searching the nearest 40960 points
from the center point. Multiple augmentation algorithms are
implemented to the region, including translation and rota-
tion. For translation, points in the region are centered to zero
by subtracting the center coordinates from the chosen point
coordinates. For rotation, we randomly rotate a certain angle
to the whole region.

x̃ = Aug(x), (1)

where x̃ is the augment region.
For the design of the contrastive objective, we deploy the

general max margin strategy, while a more sophisticated al-
gorithm is also feasible for this module. Specifically, for
a pair of sampled points, we encourage the learned repre-
sentations that are more similar to their counterparts within
the same category, while being as distinct as possible from
neighbouring points from different categories. The objective
function can be represented as:

Lm
cont (xi, xj ; f)

= 1 {yi = yj} ∥f(xi)− f(xj)∥22
+ 1 {yi ̸= yj}max

(
0,m− ∥f(xi)− f(xj)∥22

)
,

(2)

where xi, xj ∈ Sl is the pair of points, and the point set Sl

contains both real and augmented samples from Eq.1. yi,yj
denote the ground truth labels of point xi and xj , f(·) is the
embedding function, and m is a hyperparameter.

For network structure design, to obtain dense and rela-
tively low-dimension representations for downstream mod-
ules, an autoencoder network is proposed. Specifically, an
encoder network projects sample points into the feature
space for obtaining the representations, and a decoder re-
covers the representations. The equations of encoder and de-
coder are shown below:

v = f(x), p̃ = f̃(v), (3)



Table 2: Point number distributions of the training and testing sets

Categories Overall Overall Training Set Training Split Testing Set Testing Split
Number of Points Ratio(%) Number of Points Ratio(%) Number of Points Ratio(%)

Conductor Lines 1,032,617 3.50 839,454 81.29 193,163 18.71
Ground Wires 80,767 0.27 64,683 80.09 16,084 19.91

Insulators 95,193 0.27 73,996 77.73 21,197 22.27
Jumper Wires 54,959 0.19 41,917 76.27 13,042 23.73
Power Towers 1,081,921 3.66 870,206 80.43 211,715 19.57

Vegetations 27,197,616 92.06 21,381,008 78.61 5,818,808 21.39

Overall 29,543,073 100.00 23,271,264 78.77 6,271,809 21.23

Figure 4: The elevation histogram of the point cloud in the 500KV3D dataset, where the points are separated into 6 different
categories. We can see that there are considerable distribution differences across different categories. For instance, the point
number of Vegetation considerably dominates the data while the height is relatively low. And the height distributions of wires-
related points are more fluctuated.

where f(·) and f̃(·) are the embedding and decoding net-
work. v ∈ RdE and p̃ ∈ RdD are the encoded represen-
tation and decoded results, and RdE and RdD are the cor-
responding dimensions. By this way, supervised contrastive
learning enhances the discrimination of features across cate-
gories, and weaken the negative influence the data imbalance
challenge.

Adaptive Spatial Encoding
In transmission line related applications, we observe that the
shapes of most categories are elegant with enough distance
for general models to accurately recognize most regions.
However, the errors usually exist in the junctional area (e.g.,
between Vegetation and Power Tower) due to the undistin-
guished transition between the simple shapes.

To this end, we proposed an adaptive spatial encoding
strategy. Specifically, the normal vector and curvature are
jointly deployed. We consider normal vector is able to re-
veal the slight surface variations. For instance, the smooth
change in the normal vector suggests a relatively flat region,
while a significant change in the normal vector indicates a
fluctuating region. For a given point pi, we choose its k near-
est neighbors and calculate the local plane P of these points
based on the least squares algorithm. Grid search is utilized
to find the best value for k, based on the minimal test loss as
outlined in section . In this study, the optimal value for k is
8, and the algorithm can be represented as:

P (n⃗, d) = argmin
(n⃗,d)

k∑
i=1

(n⃗ · pi − d)
2 (4)

where −→n is the normal vector of the plane P , d is the dis-
tance from P to the origin point. The eigenvector corre-
sponding to the minimum eigenvalue of M is the normal

vector of P :

M =
1

k

k∑
i=1

∥pi − p0∥22 , (5)

We perform eigenvalue decomposition on the covariance
matrix M in Eq.5, and obtain the eigenvalues of M . If the
eigenvalues satisfy λ0 ≤ λ1 ≤ λ2, then the surface curva-
ture δ of point pi is δ = λ0

λ0+λ1+λ2
. The smaller δ is, the

flatter the neighbourhood is, the larger δ is, the greater the
fluctuation of the neighbourhood is. We concatenate the cal-
culated normal vectors and curvature to the original coordi-
nates before conducting contrastive learning.

Long-Range and Imbalanced Sampling
Contrastive learning and spatial encoding enhances the
model learning effectiveness. However, considering the
long-range point cloud distribution as well as the signifi-
cant imbalanced label, a long-range and imbalanced sam-
pling strategy is further proposed.

In the sampling phrase, the tail categories (e.g., Jumper
Wires) will have higher sampling ratio compared with their
sample number ratios. Moreover, for a selected point xi,
measure the diversity of its neighbors. The more diverse of
the neighbors indicates the higher learning requirements. By
finding the top nearest neighbor points of xi, our method
could also reach long-range in point sparse regions, espe-
cially for the tail categories. The sampling strategy is ilus-
trated below:

P(xi) =
nα
yi∑nyi

k=1 n
α
yi

+ β
Tknn∑nyi

k=1 n
α
yi

, (6)

where P(xi) is the probability of sampling xi, nyi
is the

point number of a given category yi, Tknn is the nearest
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Figure 5: Ablation study of our model. We illustrate the category-wise and overall segmentation performance when different
modules are included in the training stage. The thick light colour curve is the exact performance, and the darker colour denotes
the smoothed result for clear comparison. Red indicates our complete iBALR3D framework, green ablated the spatial encoding,
the brown curve ablated the sampling and spatial encoding modules, and the blue curve is the baseline framework. We can
observe that our complete framework outperforms others, which demonstrates the effectiveness of the proposed modules.

Table 3: Semantic segmentation performance of benchmarks and our method.

Methods Category-level segmentation mIoU(%) Overall mIoU(%)Cro. Gon. Ins. Jum. Veg. Pow.

PointNet (Garcia-Garcia et al. 2016) 65.53 46.56 0.92 2.41 97.52 41.71 42.44
PointNet++ (Ni et al. 2020) 84.31 77.82 13.00 25.51 99.51 71.61 61.96

StratifiedTransformer (Lai et al. 2023) 89.32 85.85 19.98 40.56 99.73 85.14 70.10
RandLA-Net (Hu et al. 2020a) 99.38 98.58 91.23 98.24 99.93 97.55 97.49

BAAF-Net (Qiu, Anwar, and Barnes 2021) 99.42 98.54 91.78 98.02 99.92 97.52 97.53
iBALR3D (Ours) 99.66 99.10 95.06 98.64 99.97 99.00 98.57

point numbers of category yi. Both α and β are trade-off
parameters.

Implementation
We use a multi-layer perceptron with 2 hidden layers for
f(·), and normalize its output, enabling distance measure-
ment in feature space via inner product. For training, we
use a batch size of 6, sample raw input points at 0.04m grid
size, and fix the total input points at 40,960. The KNN pa-
rameter is set to 16, and all other configurations follow the
RandLA-Net for the S3DIS Dataset. Our iBALR3D trains
for 100 epochs on a RTX4090 GPU with 128GB memory.

Experiments
Experimental setup
For benchmarks, five state-of-the-art benchmarks are used
for our experiments. More specifically: PointNet (Garcia-
Garcia et al. 2016) is an innovative deep learning model. It
uses raw data to create a comprehensive global feature vec-
tor, employs a symmetric function for unordered data, and
incorporates a transformation network to handle rotational
and translational variances. PointNet++ (Ni et al. 2020) is
an extension of PointNet. It solves the limitations of Point-
Net in capturing local structures by recursively applying
PointNet on the nested partitions of the input point cloud.
RandLA-Net (Hu et al. 2020a) efficiently processes large-
scale 3D point clouds, eliminating pre/post-processing. It
uses random point sampling and a local feature aggrega-
tion module to preserve geometric details by increasing the
receptive field for each 3D point. BAAF-Net (Qiu, Anwar,
and Barnes 2021) is designed for analyzing and segmenting
real point cloud scenes. It improves the local context and
fuses multi-resolution features for each point, resulting in

a comprehensive and accurate analysis. Stratified Trans-
former (Lai et al. 2023) uses sparse sampling of distant
points to expand its receptive field and create long-range
dependencies. It also includes a first-layer point embedding
and contextual position encoding to manage irregular point
arrangements.

For evaluation, Overall Mean Intersection-over-Union
(mIoU) is deployed, which is a common evaluation metric
for semantic segmentation tasks (Tang et al. 2022; Hu et al.
2020a, 2022; Zhang et al. 2023). It measures the average
overlap between the predicted and ground truth regions for
each class in a point cloud:

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi
, (7)

where N represents the number of classes, TPi represents
the number of true positives for class i, FPi represents the
number of false positives for class i, and FNi represents the
number of false negatives for class i.

For the training and testing split, since our 500KV3D
dataset consists of 42 scenes with 84 towers, we randomly
selected 34 scenes for training and 8 scenes for testing. De-
tailed statistical numbers of the training set and testing set
can be found in Table 2. Our iBALR3D model is trained and
tested using 3D coordinates together with the 8-dimensional
embedding vectors obtained by contrastive learning.

Performance
The performance of benchmarks and our method in mIoU
evaluation metric is shown in Table 3, where both the cate-
gory level and overall performances are provided. The cat-
egories in the dataset include Conductor Liners, Ground



Table 4: Ablation study of our iBALR3D model

Methods Category-level segmentation mIoU(%) Overall mIoU(%)Cro. Gon. Ins. Jum. Veg. Pow.

Baseline RandLA-Net 99.38 98.58 91.23 98.24 99.93 97.55 97.49
Ours w/o spatial encoding module 99.49 99.06 92.77 97.86 99.95 98.30 97.90

Ours w/o sampling module 99.64 98.83 94.42 98.52 99.95 98.36 98.29
Ours complete iBALR3D model 99.66 99.10 95.06 98.64 99.97 99.00 98.57

Figure 6: We visualize the results of RandLA-Net baseline
and our iBALR3D and the improvements on several differ-
ent scenes. We can see that iBALR3D can effectively reduce
errors on the junctional regions (e.g., Power Tower)

Wires, Insulators, Jumper Wires, Vegetation, and Power
Towers. Our approach achieved the best performance across
all categories. Notably, our approach outperformed existing
methods in both categories with fewer points and categories
with numerous points. In particular, the performance im-
provement for the Insulators category was nearly 4 per cent,
which is significant for applications such as insulator wind
deviation checking.

To further analyse the effectiveness of our model, t-
SNE (Van der Maaten and Hinton 2008) is used to visual-
ize the learned point cloud representations and the results
are shown in Figure 7, where (a) and (b) denote the repre-
sentations of RandLA-Net and our iBALR3D approaches re-
spectively, and different colours denotes different categories.
Considering the significantly imbalanced point number dis-
tribution, we intentionally increase the ratios of the tail cat-
egories for better visualization. From Figure 7, we can see
that our model achieves more distinguishing representations
where the same categories are more clustered in the same

(a) (b)

Figure 7: t-SNE visualization of the learned point cloud fea-
tures. (a) denotes RandLA-Net features and (b) denotes our
iBALR3D features. Different colors denotes different se-
mantic categories. From the results, we observed that our
model achieves more distinguishing features compared with
other SOTA benchmarks.

regions.
A case study is shown in Figure 6 where we visualize

the ground truth and the prediction results from RandLA-
Net and our iBALR3D model. More importantly, we fur-
ther visualize the prediction improvement compared with
RandLA-Net. We can see that our approach considerably
reduces the errors in the junctional region, which further
demonstrates the effectiveness of our modules.

Ablation Studies
We conduct ablation studies to showcase the effectiveness of
each module. Each module is individually removed, and the
model is retrained and evaluated. The adaptive spatial en-
coding module is removed by directly inputting the original
point coordinates. The long-range and imbalanced sampling
module is replaced with random sampling strategy. The re-
sults are shown in Table 4. This ablation study shows how
the proposed modules synergistically improve performance.

Conclusion
We proposed iBALR3D, a novel method for semantic seg-
mentation of point clouds. It addresses the challenges of
imbalanced data and long-range distribution in real-world
transmission line scenarios. iBALR3D incorporates a con-
trastive learning algorithm, adaptive spatial encoding mod-
ule, and sampling strategy to prioritize junctional regions
in long-range space and learn distinctive representations for
different classifications. We also introduce a new dataset,
500KV3D, for evaluation purposes. Through extensive ex-
periments, ablation studies, and case studies, we demon-
strate the effectiveness of iBALR3D.
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