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Abstract

Graphs similarity computation problem is one of the most crucial graph-based issues.
Although standard similarity measures, such as Graph Edit Distance (GED) and Maximum
Common Subgraph (MCS) can calculate exact similarity scores, yet they are computationally
costly and require polynomial time complexity over the number of nodes. In recent years,
machine learning approaches show another possible solution to graph similarity calculation
by converting it to a learning problem. Inspired by the success of graph embedding methods
and machine learning models, in this work, I combine many state-of-the-art entire graph
embedding approaches with some simple machine learning models and propose a novel
framework to address the challenging graph similarity problem, aiming to speed up the graph
similarity calculation while preserving satisfactory performances.

The proposed framework includes two strategies. In the first strategy, the similarity metric is
transformed into a continuous variable ranging from 0 to 1. In the following stage, I pick
several new entire graph embedding methods to encode graphs to feature vectors. Then these
feature vectors are used as the input of Multi-Layer Perception (MLP) regression models. In
the second strategy, the similarity measure is regarded as a discrete variable. The feature
extraction process is the same as that in strategy one. Then I feed these feature vectors into
several classification models, such as Decision tree, K-Nearest Neighbor (KNN), and MLP.
Taking MCS as an example, experiments on two datasets demonstrate the effectiveness and
efficiency of my proposed framework. Specifically, some combinations in my flamework
achieve excellent evaluation scores while significantly reducing a great time in both strategies.

Keywords: Graph similarity Computation, Graph Embedding, Maximum Common
Subgraph, Machine Learning
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1. Introduction
1.1 Motivation

Data that are represented as graphs can be found in a wide range of domains, including social
networks [1], biology [2], pharmacy [3], recommender systems [4], and network attacks
analysis [5]. Constructing a similarity metric between two graphs is a crucial stage for further
studies, such as graph/node classification [6], graph/node clustering [7], node retrieval [8],
similarity search [9], link prediction [10], etc. Although in the past few decades, many
methods and algorithms have been proposed to study the similarity of graphs, most of them
rely on sophisticated mathematics and require high computational complexity such as Graph
Edit Distance(GED) [11], Maximum Common Subgraph(MCS) [12], and Graph
Isomorphism [13]. For example, even some heuristic approaches have been put forward to
improve the performance of GED, it still needs to store enormous intermediate calculation
results, which can only be applied to compute graphs with less than 16 vertices [11]. Both
GED and MCS are known as NP-hard problem [14]. More recently, an increasing number of
researchers began to formulate graph similarity estimation as a learning problem to give a
pair of graphs a similarity score based on graph representations [13], such as Graph Kernels,
Graph Neural networks, and Graph Embedding. Although these methods are still not capable
of handling well on graphs of complex structures, they generally have lower computational
costs. Specifically, in the field of Graph Embedding, a more significant number of approaches
have emerged in the decade, which can be categorized into two groups roughly: node level
embedding and graph level embedding [15]. So far, many works have concentrated on graph
embeddings, but few works combine the effort with graph similarity computation. To
improve the efficiency of graph similarity computation while preserving an excellent
performance, I propose a new framework to compute similarity scores in a pair of graphs
based on some state-of-art graph embedding algorithms and existed classification models in
the machine learning field.

1.2 Aims & objectives

The project is aimed to design a novel framework for learning computing similarity scores
with a low computational cost. Instead of calculating the precise similarity scores directly, my
design turns the problem into a machine learning problem.

To achieve the aim, the objectives of this study are:

(1) Study the literature to find out how similarity is calculated in a pair of graphs and what
are the possible methods to speed up the computation process.

(2) Design methods that can improve the efficiency of graph similarity computation
theoretically.

(3) Implement the selected exact similarity computation algorithm MCS and the proposed
fast approaches.

(4) Test and evaluate the performance of the proposed methods and the exact MCS to find
out whether the proposed ways are better than the exact one.

1.3 Contribution

My contribution can be summarized as follows:
(1) I address the classical graph similarity computation problem by transforming it into



regression and classification machine learning problems in two strategies. At the feature
extracting stage, five state-of-art methods like FEATHER [16], GI2Vec [17], SF [18], FGSD
[19] and NetLSD [52] are used to produce the whole graph feature as a multidimensional
vector individually. At the training stage, obtained feature vectors from a pair of graphs are
used as the input of the MLP Regression Model in strategy one and predicted numeric
similarity scores are the output. The MLP Regression Model will learn to minimize the
differences between the predicted values and the ground-truth scores. When using the original
discrete number of MCS in strategy two, the same obtained vectors from a pair of graphs will
be used as input of classification models like Decision Tree, KNN, and MLP. At the test stage,
by feeding the learned MLP Regression Model or classification models with any pair of
graphs features, I can get the predicted similarity score.

(2) To demonstrate and compare the effectiveness and efficiency of my proposed framework,
I complete experiments on a widely used graph similarity metric, MCS. It is shown that the
proposed methods obtain very competitive results compared to the original MCS even only
using the simplest machine learning models. For example, in strategy one, The SF based
model is 68996 and 382241 times faster than the exact MCS approach on AIDS and IMDB
while obtaining R squared of 0.83 and 0.89, respectively. And in strategy two, the SF-DT
method is 2727222 and 943655 times faster than the exact MCS method on AIDS and IMDB
while achieving high accuracies of 0.98 and 0.88 individually.

1.4 Organization

The rest of the paper is organized as follows.

Chapter 2(Background) will describe some technical background for the design and
implementation of my proposed approach, including traditional graph similarity metrics,
Neural Network and Multi-Layer Perception, and Model Evaluation.

Chapter3(Related Work) will present a state-of-art literature review in Graph Embedding and
classical graphs similarity metrics.

Chapter4(Design and Implementation) will describe the design and implementation of the
proposed framework.

Chapter5(Experiments) will conduct experiments and evaluate the performances of my
proposed framework, providing graphical demonstrations.

Chapter6(Conclusion) will provide a summary of the individual project and discuss the
possible work which can be explored in the future to improve the algorithm.
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2. Background
2.1 Graph Similarity Metrics

Graph similarity computation is closely related to many other research regions such as graph
classification, graph match, graph clustering, etc. Therefore, many algorithms and similarity
measures have been suggested in the decade. The proposed approaches can be categorized
into three types: graph isomorphism (Graph Edit Distance and Maximum Common
Subgraph), feature extraction, and iterative algorithms [54]. Among them, graph
isomorphism-based measures can calculate the exact and explainable results, but they require
exponential time as nodes increasing. Thus, they cannot be applied to large graphs. For
feature extraction-based algorithms, they rely heavily on the features that are selected. It is
very likely to get not intuitive and explainable results though they generally scale well and
can be very fast. For example, even a pair of graphs consisting of very different numbers of
nodes, feature extraction-based approach is possible to give the high similarity score, which
is not desirable. The core idea behind iteration-based algorithms is that a pair of nodes are
similar if their neighbors are similar. Most algorithms in this branch usually couple compute
similarity scores of nodes and edges at first, then, the similarity score of a pair of graphs. In
this paper, I choose to use MCS, a graph isomorphism-based algorithm, as the similarity
score that is explainable and intuitional.

2.1.1 Graph and Graph Isomorphism

Graphs consist of a set of vertices and edges and can be represented as nodes and edges.
There are many types of graphs according to different kinds of nodes and edges. For instance,
in a graph, edges can be directed or undirected, weighted or unweighted. Likely, nodes can
have attributes or not. In this paper, graphs are simple, undirected, and unweighted graphs
without node attributes. A graph exists in various forms of representation having the same
number of vertices, edges, and edge connectivity. Such graphs are named isomorphic graphs.
Both the Maximum Common Subgraph (MCS) and Graph Edit Distance (GED) are
developed based on this concept. For example, the graphs in Figurel are isomorphic, despite
their various visual representations. More formally, I use the definition and terminology from
[21]: A pair of graphs G, = (Vl,E1 ),G2 = (VZ,EZ) are isomorphic if there is a bijection ¢
between ¥V, and V, such that for every pair of nodes i, j €V;, (i, j) € E, if and only if
(i), ¢())) € E, . Symbolically we denote this by G, = G, . A bijection with this property is
called an isomorphism. In the above definition, graphs are simple graphs that are unlabeled,

undirected, and unweighted.

Figure 1 Example of isomorphic graphs

2.1.2 Maximum Common Subgraph

Maximum Common Subgraph (MSC) is a core and widely used measure for determining
graph similarity [12]. The Subgraph Isomorphism problem is to find a copy of a small pattern
graph inside a larger graph [22]. When the same pattern does not exist, we may want to be
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given a set that contains as many vertices or edges of the pattern as possible. According to
this, MCS can be classified as Maximum Common Induced Subgraph (MCIS) and Maximum
Common Edge Subgraph (MCES). In this paper, I focus on MCIS and call it MCI in the rest
paper for convenience. Maximum Common Subgraph (MCS) problem has been proven NP-
hard and is far more computationally extensive than Subgraph Isomorphism problem. Figure
2 provides an illustration of MCIS of a pair of graphs. The maximum common induced
subgraph of the below graphs contains 4 vertices.

Figure 2 Example of MCS

Once the number of vertices in the maximum common induced subgraph is obtained, I
transform it into a similarity score ranging from 0 to 1. More details about the transformation
will be introduced in Chapter4.

2.1.3 Graph Edit Distance

Graph Edit Distance (GED) is the generalization of the graph isomorphism problem [54]. It is
one of the most popular and well-established metrics to measure graph similarity by
evaluating an error-correcting graph isomorphism [23]. It can be applied to various types of
graphs, such as directed, undirected, labeled, unlabeled graphs. Formally, Given two graphs
G and Q, the GED between them can be denoted as ged (G, Q). GED is defined as the

minimum number of edit operations that transform one graph to another [11]. An edit
operation on a graph in this paper is an insertion or deletion of a vertex/edge. For example,
Figure 3 demonstrates an example of GED. The graph edit distance between the left graph
and the right graph is two, as the transformation needs 2 edit operations: (1) an edge deletion,

(2) an edge insertion.

Figure 3 Example of GED

2.1.4 Relation Between MCS and GED

MCS and GED are both widely used similarity metrics in many fields, such as graph
classification, graph clustering, graph matching, and graph embedding. It has been proved by
researchers that under a particular cost function, GED computation is equivalent to the MCS
problem [53].

2.2 Neural Network and Multi-Layer Perception

12



Neural Network has become extremely popular in the decade and is a form of bio-inspired
machine learning models and can be used in both classification and regression tasks. It can
classify data that is not linearly separable. The learning algorithm of a neural network can be
supervised learning, unsupervised learning, and reinforcement learning according to different
scenarios. In this paper, I only use supervised neural networks to calculate graph similarity.
So far, there existed many neural network variants, such as Back Propagation (BP) Neural
Network, Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and
Long short-term Memory Network (LSTM), etc. However, the most straightforward and
original form of the neural network is Multi-Layer Perception (MLP).

The most typical MLP consists of three layers: an input layer, a hidden layer, and an output
layer as it is shown in Figure 4. The MLP neural network is fully connected between different
layers. Figure 5 shows the structure of the MLP. There is three essential elements in MLP: (1)
weights, (2) Bias, (3) activation function. The hidden layer and output layer utilize a defined
non-linear activation function that can combine input features with weights of the neurons
and compute bias. The procedure is demonstrated in Figure 5.

HIDDEN LAYERS

/ \
T~

Figure 4 Structure of MLP [57]
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Figure 5 MLP Model [56]

2.3 Model Evaluation
2.3.1 Cross Validation

Cross Validation is a statistical approach used to split the dataset into folds to train and test
models repeatedly using various combinations of folds. There are many types of cross
validation methods, such as N-fold Cross Validation, Leave-One-Out Cross Validation, etc. In
this paper, I choose N-fold cross validation to evaluate my proposed model. This method
guarantees that the score of my model does not depend on the dataset division for picking the
train and test set [24]. The steps are as follows.
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(1) Split the entire dataset into N approximately equal subsets randomly.

(2) Execute N times the model that you want to evaluate where one subset is employed for
testing, and the rest subsets are used for training.

(3) Calculate the error rate after each repetition and average the results to yield an overall
error rate.

2.3.2 Performance Measures of Numerical Predictive Models

(1) Mean Squared Error (MSE)
In numerical predictive models, D = {(xl, b2 ) ,()(2,)/2 ) . .,(Xm Vo )} is the sample,

y,represents the ground-truth value for x.. To evaluate the performance of the model f°, the

predicted value f(x) will be compared will ground true value y . The most commonly used
performance measure in regression tasks is the Mean Squared Error (MSE).

E(f;D)zii(f(x,.)—yi)z

i=1
This measure is ranging from 0 to infinity. The larger MSE value indicates the worse the
model. When MSE value is equal to 0, it is a perfect model [58].

(2) R Squared ( Rz)
R Squared (R”), also called the coefficient of determination, varies from 0 to 1 and is a

normalized version of MSE. R* measures the proportion of the variance for a dependent
variable’s behavior that's explained by an independent variable’s behavior. It can also be used

to measure how well the data fit the regression model. An R* of 1 indicates that the
dependent variable is entirely explained by the independent ones. Although high R Squared
does not always denote the goodness of the regression model, it provides useful insights. A
higher R squared reveals a better data fit for the regression model. Most times, people draw a
conclusion about their model by using R squared together with other metrics in a statistical
model [25].

R2-1_ Unexplained Variation

Total Variation

2.3.3 Performance Measures of Classification Models

In the machine learning field, specifically the classification problems, a confusion matrix is
widely used to describe the performance of models in a tabular way. A confusion matrix
provides a summary of predicted values. Each entry in the matrix is the figure of predicted
values that are obtained by the model. Classification accuracy is the most commonly used
measure to evaluate the performance of classification models. It can be calculated by using
the number of right predictions divided by the total number of predictions. Here is an
example showing how to use a confusion matrix to calculate accuracy in a multi-class
prediction problem [26].

Predicted Class
a b c Total
Actual a 88 10 2 100
Class b 14 40 6 60

14



c 18 10 12 40
Total 120 60 20 200

Table 1 Example of the confusion matrix in multiclass problems

Total Accuracy (Precision) = (88 + 40 + 12) / 200 = 70%

Most data are imbalanced in multiclass classification problems. With imbalanced classes, it is
not hard to obtain a high accuracy score without actually predicting useful results. Therefore,
accuracy should not be used as the only metric to evaluate the multiclass classification
models in which class labels are not uniformly distributed. The confusion matrix is an
excellent tool to supplement performance. By looking at the confusion matrix, we can clearly
find out how well the model is in predicting each class.

2.3.4 Kendall Rank Correlation Coefficient

A rank correlation is used to measure an ordinal association, and Kendall rank correlation is a
type of rank correlation. Kendall rank correlation, also commonly referred to as “Kendall’s
tau coefficient”, is performed to test the similarities in the ordering of data when it is ranked
by quantities [54]. Specifically, the correlation coefficient will return a value ranging from -1
to 1. Values close to 0 indicate that there is no relationship while values close to 1 or-1 denote
that there exists a perfect positive or negative relationship. Another commonly used rank
correlation is Spearman’s rank correlation coefficient. Compared to Spearman’s rank
correlation coefficient, Kendall rank correlation is a non-parametric metric that requires no
assumptions of the test. Formally, if we have two samples A and B and their sample size is N.

o . . 1
The total combinations of pairings of the element in A and B is EN (N —1). Kendall rank

correlation can be computed using the formula below [59]:
Nc — Nd

1
SN -1

T =

N, denotes the number of concordant

N, denotes the number of discordant
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3. Related Work
3.1 Graph Embedding

Graph analysis, such as graph classification, graph similarity computation, and node
recommendation, provides people a better comprehension of the data from a wide diversity of
scenarios in the world. Most proposed models to solve graph-based problems either works on
graph adjacency matrix or on a derived vector space [27]. In recent years, Graph Embedding,
an approach based on representing graphs in vector space while remaining the features, has
been attracting increasing attention due to its effectiveness and efficiency compared with the
traditional adjacency matrix [28]. There are multiple ways to categorize Graph Embedding,
and details can be found in [13, 14, 15, 28]. In this Section, I roughly classify it into node
level embedding and graph level embedding and briefly introduce some traditional and state-
of-the-art methods in each classification as follows.

3.1.1 Node Level Embedding

There are a large number of methods that have been proposed for embeddings. Most of them
can be categorized into two categories: (1) matrix factorization-based, and (2) random walk-
based [29]. Matrix factorization, also called matrix decomposition, is a very sought-after
approach used to reduce a complex matrix into constituent parts. It will be easier to operate
on the constituent parts than the original complicated matrix [60]. Random walk on simple
graphs is the process that starts in a chosen node then keeps moving to the neighbor of a
current node randomly till reaching the number of specified steps [61]. Most works focused
on matrix factorization-based algorithms are proposed early, including LLE [30], Laplacian
Eigenmaps [31, 32], GraphRep [33], Hope [34], etc. In recent years, random walk-based
approaches have become a popular branch to extract the properties of graphs combining with
natural language processing models. There are three classical steps in the development of
Random Walk-based node level embedding approaches in general. At the first stage,
DeepWalk was proposed on the basis of Word2vec [35, 36] that is a method applying
Word2vec in the NLP domain to Graph Embedding with low costs [37] in 2014. Then, in the
following year. Tang Jian et al. improved DeepWalk and proposed Large-scale Information
Network Embedding (LINE). LINE took different walking strategies in comparison with
DeepWalk, which allows LINE to be used in a wide type of networks, such as directed graphs,
undirected graphs, and weighted graphs. By introducing the first- and second-order neighbor
relations into the objective function, the distribution of the node embedding learned at the end
can be more balanced and smoother [38]. Then in 2016, Grover Aditya et al. proposed
Node2vec [39]. The main difference between DeepWalk and Node2vec is that the latter
conducts random walks biasedly that offers a trade-off between breadth-first (BFS) and
depth-first (DFS) graph searches [14]. Recently, the field continues to thrive. In 2018,
Alibaba proposed Enhanced Graph Embedding with Side Information (EGES) [40] to cope
with the problem of cold start in embedding.

3.1.2 Graph Level Embedding

A large number of works concentrate on nodes embedding of graphs. However, some
machine learning models, such as graph similarity computation, graph classification, and
graph clustering, require the embeddings of entire graphs. Inspired by the success of Random
Walk and word embedding models, such as Word2vec [35] and Doc2vec [41] related to node
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level embedding, Graph2vec [20], Gl2vec [17] and FEATHER [16] are proposed in sequence.
Graph2vec is an extension to Node2vec which is introduced in previous. Graph2vec is
classical and based on Doc2vec. A document is made of sentences while a graph is made of
subgraphs. GI2vec improved the limitations of Graph2vec, which can handle edge labels and
extracted better structural information on graphs. Benedek et al. proposed FEATHER this
year. In the FEATHER algorithm, a newly defined characteristic function on graphs to
describe the distribution of node features in several aspects shows better performance than
most existed algorithms in both node classification tasks(DeepWalk, LINE, Node2Vec,
GraRep) and graph classification tasks(GL2vec, Graph2Vec, etc.).

Apart from random walk-based node embedding approaches, some simple but fast
embedding algorithms significantly outperform than many sophisticated ones in classification
experiments, including FGSD [19] and, NetLSD [52], SF [18]. FGSD embeds the graphs
based on the discovery of a family of graph spectral distances. SF and NetLSD both use
spectral decomposition and graph Laplacian to perform graph embedding process.

3.2 Graph Similarity Metrics
3.2.1 GED-based Approaches

Computing GED directly is known as the NP-hard problem. It becomes infeasible as the
number of vertexes and edges increases. Even most state-of-the-art approaches cannot
guarantee to calculate reliable GED within polynomial time in a pair of graphs more than 16
vertexes [42]. Many works turn into computing approximate GED based on heuristic
algorithms, including A*-GED [43], DF-GED [44], and CSI_GED [45], etc.

3.2.2 MCS-based Approaches

MCS has been proven NP-hard. Over the years, some works motivate to perform the
algorithm in parallel [46, 47]. Some methods are proposed to approximate MCS to improve
efficiency [48, 49, 50]. Specifically, genetic algorithms [49], branch and bound algorithms
[46, 40] are combined to reduce the searching cost.
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4. Design and Implementation

The previous chapter provided a review of recent literature on the area of graph embedding
and classical graph similarity metrics. This chapter describes the development process of
feature extraction, similarity metrics transformation, creating the machine learning models,
and their parameter settings. In each step of the process, the implementation tools like
software, related packages, and functions are presented.

4.1 Feature Extraction
4.1.1 Implementation Tools

NetworkX is a free Python package to manipulate and study complex graphs. It contains
many standard graph algorithms, such as GED and ISMAGS. I can obtain MCS by operating
on the ISMAGS algorithm. It is capable of seeking all subgraphs and MCS in a pair of graphs.

Karate Club [51] is an open-source Python framework on Github, consisting of many state-
of-the-art approaches, such as Deepwalk, Node2vec, and Graph2Vec, etc., to do graph
analysis. Implement approaches cover a wide range of conferences, workshops, and journals.

Centos and Windows operating systems are chosen to implement the algorithms. I installed
Python3.7, then NetworkX, Karate Club, and other related libraries in the Centos7.4 virtual
machine installed on Oracle VM VirtualBox and Windows10.

After completing the configuration of the environments, I can start coding to extract graph
features.

4.1.2 FEATHER [16] (CIKM 2020)

FEATHER is a computationally efficient neighborhood-based graph embedding method that
can be used in both node embedding level and graph embedding level. In this algorithm, the
main contribution is that a characteristic function is defined as transition probabilities of
random walks on graph vertices to describe node features based on random walks. In this
paper, | will use FeatherGraph() API in the Karate Club library to implement FEATHER
directly, and all graphs I feed into it are unweighted, unlabeled, and undirected graphs after
standardization. And the output is stored in the format of the array. Each line of the array
represents an embedded whole graph vector. Some parameter settings will be introduced in
the experiment part.

4.1.3 GL2Vec [17] (ICONIP 2019)

As it is mentioned before, GL2Vec improves Graph2Vec by preserving more structural
information and edge label information. Specifically, GL2Vec uses the line graphs to
complement the missed edge label information based on the property of the line graph that
can turn the edge label into the node label. There exists an API GL2Vec() to realize the
algorithm in Karate Club. Some parameter settings will be introduced in the experiment part.

4.1.4 NetLSD [52] (KDD 2018)
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NetLSD produces whole graph vectors by extracting properties of the Laplacian spectrum
using the heat or wave kernel in a pair of graphs. The approach is designed for a fast
comparison of large graphs based on three properties of the heat trace: (1) Permutation-
invariance, (2) Scale-adaptivity, and (3) Size-invariance. According to the paper, NetLSD
outperforms FGSD on various datasets in the area of graph classification. I achieve this
approach using the API NetLSD() in the Karate Club. Some parameter settings will be
introduced in the experiment part.

4.1.5 SF [18] (NeurIPS RRL Workshop 2018)

FEATHER and GL2Vec can be classified as random walk base methods while SF is different
from them. SF is a very simple and fast approach to represent graphs based on the spectral
decomposition of graph Laplacian. An API SF() in the Karate Club package can perform the
algorithm straightly. Some parameter settings will be introduced in the experiment part.

4.1.6 FGSD [19] (NeurIPS 2017)

FGSD (Family of Graph Spectral Distances) is discovered to represent unlabeled graphs and
demonstrates good uniqueness, stability, sparsity. Also, it can be computed very efficiently,
and perform well in classification tasks. [ use FGSD() API in the Karate Club library to
realize the algorithm. Some parameter settings will be introduced in the experiment part.

4.2 Strategy One

Strategy One is a numerical prediction model based on the simplest neural network model
MLP. I propose a graph similarity metric based on MCS ranging from 0 to 1 before training
the model. Two graphs are believed identical if the proposed similarity measure is equal to 1.

4.2.1 Implementation Tools

Scikit-learn is a simple and efficient machine learning package in Python. I use it to perform
MLP in strategy one. Scikit-learn is built on Numpy, SciPy, and Matplotlib and consists of a
wide range of classification, clustering, regression, and evaluation algorithms, such as
Decision Tree, Random Forrest, K-Means, and Logistical Regression.

4.2.2 Similarity Measure

G = (Vl,El) and G, = (Vz,Ez) are a pair of graphs, and the Maximum Common Subgraph
(MCS) based similarity metric is defined as,

mcs (G1 ,G, )

max (G1 ,G, )

In the equation above, mcs(Gl, Gz) represents the common number of vertexes in two graphs

MCS(G,,G,) =

and max (Gl, Gz) denotes the largest possible number of common vertexes. If a pair of

graphs are the same, which means there exists an isomorphism between them, then the figure
of mes(G,,G,) equals that of max (G,, G, ), and the similarity score will be 1. On the

opposite, if G, and G, are entirely different, the value of mcs(G,,G,) will be 0 resulting in
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the similarity score of 0. In other cases, the similarity score will lie between 0 to 1. The value
of MCS(GI, Gz) is regarded as a ground-truth similarity score to train the following

prediction model.

Before starting to train the model, the designed ground-truth similarity scores need to be
calculated, including all possible pair graph combinations. Networkx.number _of nodes()
denotes using number_of nodes() in NetworkX to compute the number of nodes in a graph.
Networkx.mcs() is used to find the number of common nodes of a pair of graphs. Dataframe()
is the operation to transform lists to a dataframe. The output msc_dataframe stores the graph
numbers of a pair graph and their similarity measure.

Algorithm 1: MCS Numerical Similarity Metric

1: graphs_list — List of graphs imported by NetworkX
2: function MCS_Num (graphs_list):
3: k<0

4: mcs _num < Initialize an empty list

5: graphnol < Initialize an empty list

6: graphno2 < Initialize an empty list

7. foriin O: length(graphs list) do

8:  forjini: length(graphs_list) do

9: true_num_of common nodes < Networkx.mcs(graphs_list[i], graphs list[j])
10: if (Networkx.number of nodes(graphs_list[i]) > Networkx.number_of nodes(graphs_list[i])) do
11: max_num_of common_node < Networkx.number_of nodes(graphs_list[i])
12: else do

13: max_num_of common node < Networkx.number of nodes(graphs_list[j])
14: mcs_score < true_num_of common_nodes/ max_num_of common_ node
15: mcs_num[k] < mcs_score

16: graphnol[k] < i

17: graphno2[k] < j

16: k ++

17: end

18: mcs dataframe < Datafirame(graphnol, graphno2,msc_num)
19: Output mcs_dataframe

20: end function

4.2.3 Numerical variables prediction model

The Multi-Layer Perceptron (MLP) algorithm is a simple and classical form of Neural
Network that is widely used for both regressions as well as classification. The variable
embedding vector is the output of the previous feature extraction model in the form of an
array. Assuming the shape of the array is M x N. The total number of rows M denotes the
number of graphs and the total number of columns N represents the selected number of
dimensions of an entire graph feature vector. I use the sklearn. MLP() to create the MLP
regression model based on the training set. sklearn. MSE() is used to compute the Mean
Squared Error (MSE) of the test dataset to evaluate the model. sklearn.r2() is used to obtain
the R squared of the model and scipy.stats. kendalltau() is used to get Kendall rank
correlation of the model.
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Algorithm 2: MLP Regression Model

1: embedding_vectors — an array of all graph vectors

2: mcs_dataframe — the dataframe records the number a pair graphs and their score
3: function MLP (embedding_vectors, mcs_dataframe):

4. combine vectors<—Dataframe(embedding vectors[mcs_dataframe.graphnol], embedding vectors[mcs_dataframe.graphno2])
scores < mcs_dataframe.mcs_num

model < sklearn. MLP(combine vectors, scores)

mse < sklearn. MSE(model)

r2 < sklearn.r2(model)

9: kentau<~ scipy.stats. kendalltau (model)

10: Output mse, r2, kentau

11: end function

4.3 Strategy Two
4.3.1 Implementation Tools

I also use Scikit-learn to achieve KNN, Decision Tree, and MLP Classification Model in
strategy two.

4.3.2 Similarity Measure

In strategy two, inspired by the development of embedding techniques in recent years, I
consider this graph similarity computation problem as a classification problem. The number
of common nodes in two graphs found by the MCS approach is regarded as discrete
categories. I test several simple classification models to speed up the calculation process
while preserving accuracy.

Compared with Computing its numerical version, it only needs to find the number of
common nodes in a pair graph using Networkx.mcs() with no more additional operations.

Algorithm 3: MCS Discrete Similarity Metric

1: graphs_list — List of graphs imported by NetworkX

2: function MCS_Dis (graphs_list):

3: k<=0

mcs_dis < Initialize an empty list

graphnol < Initialize an empty list

graphno2 < Initialize an empty list

. foriin O: length(graphs_list) do

for jin 1: length(graphs_list) do

9: true_num_of common nodes < Networkx.mcs(graphs_list[i], graphs_list[j])
10:  mes_dis[k] < true num_of common_nodes

11: graphnol[k] < i

12:  graphno2[k] <]

13: k ++

14: end

15: mcs dataframe < Dataframe(graphnol, graphno2, msc_num)

PRS0 R
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16: Output mes_dataframe
27: end function

4.3.2 Classification Model

(1) KNN

K-nearest neighbors (KNN) algorithm is a non-parametric method that can be used for both
classification and regression. I use sklearn. KNN() to achieve the KNN algorithm based on
the training set. sklearn.accuracy() is used to compute the accuracy of the test dataset to
evaluate the model. The definition of accuracy is specified in the Background. Common
variables in Algorithm 4 have been explained in Algorithm 2. Few core parameter settings
about KNN will be introduced in the next Experiments section.

Algorithm 4: KNN

1: embedding_vectors — an array of all graph vectors

2: mcs_dataframe — the dataframe records the number a pair graphs and their score
3: function KNN (embedding_vectors, mcs_dataframe):

4: combine_vectors—Dataframe(embedding_vectors[mes_dataframe.graphnol], embedding_vectors[mes_dataframe. graphno2])
5: scores < mcs_dataframe.mcs_num

6: model ~ sklearn. KNN(combine vectors, scores)

7: accuracy < sklearn.accuracy(model)

8: Output accuracy

9: end function

(2) Decision Tree

A decision tree is a simple type of classification model that can be used to predict the
category of the target variable based on prior training data. sklearn.Decision_Tree()
represents using the function in sklearn package to implement the decision tree model.
Common variables in Algorithm 5 have been explained in Algorithm 2 Few core parameter
settings about the decision tree will be presented in the next Experiments section.

Algorithm 5: Decision Tree

1: embedding_vectors — an array of all graph vectors

2: mcs_dataframe — the dataframe records the number a pair graphs and their score
3: function Decision_Tree (embedding vectors, mcs_dataframe):

4. combine vectors<—Dataframe(embedding_vectors[mcs_dataframe.graphnol], embedding vectors[mcs_dataframe.graphno2])
5: scores < mcs_dataframe.mcs_num

6: model <~ sklearn.Decision_Tree(combine vectors, scores)

7: accuracy < sklearn.accuracy(model)

8: Output accuracy

9: end function

(3) MLP Classification Model

This is the classification version of MLP. I use sklearn library to achieve this. Common
variables in Algorithm 11 have been explained in Algorithm 2. Few core parameter settings
about the model will be introduced in the next Experiments section.

Algorithm 6: MLP Classification Model
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1

2: mes_dataframe — the dataframe records the number a pair graphs and their score

3

4:

5
6
7:
8
9

: embedding_vectors — an array of all graph vectors

: function MLP_Classififer (embedding vectors, mcs dataframe):
combine_vectors<—Dataframe(embedding_vectors[mes_dataframe.graphnol], embedding_vectors[mes_dataframe.graphno2])
: scores < mcs_dataframe.mcs_num

: model < sklearn.MLP_Classififer(combine vectors, scores)

accuracy < sklearn.accuracy(model)

: Output accuracy
: end function
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5. Experiments
5.1 Datasets

Two well-known graph datasets are used for the experiments. A summary to the datasets is
shown in Table2.

Dataset Graph Meaning Num of graphs | Min Nodes | Max Nodes
AIDS | Chemical Compounds 697 2 10
IMDB Social Networks 238 12 15

Table 2 A summary of datasets used for the experiment

(1) AIDS

The AIDS dataset is a set of 42687 chemical compound structures from the Developmental
Therapeutics Program at NCI/NIH [12] and is widely used in many existed researches on the
graph. I select 697 graphs, each of which has no more than 10 nodes and turn the labeled
graphs into simple graphs that are unlabeled, unweighted, and undirected.

(2) IMDB

The IMDB dataset is a collection of 1500 ego-networks of actors or actresses. An edge
between two persons means that they are in the same movie. I pick 238 graphs from the
IMDB dataset, each of which has more than 12 nodes and less than 16 nodes, to test the
scalability and efficiency of my model. All nodes are unlabeled in IMDB.

Distribution of graph sizes Distribution of graph sizes
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Figure 6 Distribution of graph sizes of AIDS and IMDB datasets

5.2 Data Preprocessing

For each dataset, I split dataset according to 4-fold cross validation methods before
computing MSE, R squared, accuracy, and other metrics in the model evaluation stage.
Specifically, I randomly partition the original dataset into 4 equal subsets. For 4 times, using
one of them as a test set per time without repetition, the rest subsets are used for training.
More specifically, 75 percent of the total dataset is used for training and 25 percent is used for
testing per time.

Even graphs from AIDS are comparably small, performing GED on a significant number of
graphs is still very challenging for my PC and HPC virtual machine. Therefore, I choose to
use MCS to compute graph similarity scores. However, as the number of nodes and edges
increases in the IMDB dataset, MCS becomes computationally infeasible for both my own
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PC and HPC virtual machine. For traditional graph similarity metrics GED and MCS, no
currently available algorithms are capable of giving reliable results of a pair of graphs with
more than 16 nodes within acceptable time [12]. So, I only use graphs that have more than 12
nodes and less than 16 nodes to test in the IMDB dataset distinguishing from the selection in
the AID dataset.

5.3 Baseline Methods

In this work, the baseline is based on the classical MCS algorithm. In the strategy one, I use
my transformed MCS similarity metric as the target variable to train the model. In the
strategy two, I simply use the number of common nodes obtained by MCS.

5.4 Parameter Settings

I conduct all the experiments on a single laptop with an Intel 17-7700HQ CPU and a 16G
memory.

5.4.1 Feature Extraction

The output of the feature extraction step is an entire graph embedding vector each. The
dimension of each graph embedding vector is 60 no matter what feature extraction algorithm
is employed on AIDS in two strategies, for that reason that the dataset is vast, and my laptop
can bear no larger dimension parameters.

When using the IMDB dataset in two strategies, | set different vector dimension parameters
according to different feature extraction algorithms. It is shown in Table3.

Approaches Dimension
FEATHER 100
GL2Vec 120
SF 100
FGSD 50
NetLSD 100

Table 3 Dimension Settings on IMDB

5.4.2 Strategy One

In the MLP regression model, the hidden layer size is set to 100. ReLU is used as an
activation function. Adam is chosen to be the solver for weight optimization, and the
maximum number of iterations is set to 200. Specifically, the selected solver Adam will not
stop iterating until convergence or reaching this number of iterations. The batch size is set to
be automatic.

5.4.3 Strategy Two

(1) KNN
In the KNN classification model, I set the number of neighbors to use to be 5. The distance
metric is Minkowski distance.
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(2) Decision Tree
I choose to use the CART decision tree and the entropy criterion is adopted to measure the
quality of a split. I do not set the maximum depth of the tree.

(3) MLP
In the MLP classification model, the maximum number of iterations is set to 500. Other
parameter settings are the same as the MLP regression model.

5.5 Evaluation Metrics

In strategy one, time, Mean Squared Error (MSE), R Squared, and Kendall Rank Correlation
Coefficient are used to evaluate the model. Time is the wall time required to calculate the
similarity score of two graphs. MSE measures the average squared difference between the
model results and the actual scores. Since MSE does not have up and low limits, I also use R
squared to return a score between 0 and 1. The larger figure means the better model generally.
Kendall Rank Correlation Coefficient is also adopted to measure the ranking results.

In strategy two, I select time, accuracy, and confusion matrix to evaluate the models. Time is
the runtime needed for each model to obtain the score for a pair of graphs. Accuracy is the
proportion of predictions the model classified correctly. The confusion matrix is used to
supplement the accuracy in the multiclass classification problem.

5.6 Results
5.6.1 Strategy One

(1) Effectiveness

The results on AIDS and IMDB datasets are demonstrated in Table 4 ad Table 5. » represents
Kendall Rank Correlation Coefficient. SF reaches the best performance on all measures on
two datasets while NetLSD performs worst on all metrics on two datasets. Interestingly,
FEATHER and GL2Vec do not work well on the AIDS dataset. However, they both show
excellent performance on the IMDB dataset that is a more complex dataset than the AIDS
dataset. On the contrary, FGSD works better on the AIDS dataset than the IMDB dataset.

Embedding Methods MSE R’ r
MSC(Baseline) 0 1 1
FEATHER 0.0061 0.51 0.42
GL2Vec 0.0115 0.24 0.40
SF 0.0026 0.83 0.66
FGSD 0.0032 0.82 0.65
NetLSD 0.0133 -0.0041 0.016
Table 4 Results on AIDS (strategy one)
Embedding Methods MSE R’ r
MCS(Baseline) 0 1 1
FEATHER 0.0023 0.89 0.80
GL2Vec 0.0081 0.63 0.67
SF 0.0021 0.89 0.81
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FGSD 0.0128 0.63 0.72

NetLSD 0.0158 0.23 0.40
Table 5 Results on IMDB (strategy one)

(2) Efficiency

Since calculating MCS is exceptionally time-consuming, I randomly choose a small sample
from each dataset to compute the average time for the MCS of a pair of graphs individually,
then multiply the average value by the number of the test dataset. The runtime comparison of
the two datasets is demonstrated in Table 6 and Figure 7. The time measured for my proposed
models does not include the time of the graph embedding stage. Since the selected IMDB
dataset is comparably small, there is only a slight difference in all proposed models referring
to time on this dataset. They all show excellent efficiency on IMDB. For instance, the SF
based model is 382241 times faster than the exact MCS algorithm, and FGSD based model is
439888 times faster compared with original MCS on AIDS. Moreover, the SF and FGSD
based models perform the best and the second-best results on the AIDS dataset. They
significantly save more time than the other three models. Specifically, the SF based model is
68996 times faster than the exact MCS algorithm on AIDS while the figure for FEATHER is
10822.

Time on AIDS(s) | Time on IMDB(s)
MCS(Baseline) 23527.9387 18959.1922
FEATHER 2.174 0.0391
GL2Vec 3.961 0.0466
SF 0.341 0.0496
FGSD 0.422 0.0431
NetLSD 3.513 0.0436

Table 6 Time evaluation (strategy one)

Efficiency Evaluation Efficiency Evaluation
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Figure 7 Time evaluation (strategy one)
In conclusion, it is reasonable to use my proposed flamework to speed up graph similarity
computation, which is especially true for using SF based approach. It demonstrates the best

efficiency on large graphs while preserving the lowest MSE, highest R Squared, and high
Kendall Rank Correlation Coefficient.

5.6.2 Strategy Two
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Figure 8 demonstrates that both AIDS and IMDB are imbalanced. Specifically, the classes
(MCS) are not presented equally. Therefore, only using accuracy to measure the performance
is not enough. I also use the confusion matrix as a supplement. The confusion matrix is
normalized by row.

(1) Effectiveness
The results of AIDS and IMDB datasets are demonstrated in Table 7.
Models Accuracy on AIDS | Accuracy on IMDB
MCS(Baseline) 1 1

FEATHER-KNN 0.86 0.84

FEATHER-DT 0.88 0.86

FEATHER-MLP 0.68 0.83

GL2Vec KNN | Computationally 0.76

infeasible

GL2Vec-DT 0.40 0.63

GL2Vec-MLP 0.44 0.67

SF-KNN 0.90 0.82

SF-DT 0.98 0.88

SF-MLP 0.79 0.81

FGSD-KNN 0.86 0.80

FGSD-DT 0.87 0.81

FGSD-MLP 0.81 0.77

NetLSD-KNN 0.37 0.79

NetLSD -DT 0.35 0.84

NetLSD -MLP 0.39 0.36

Table 7 Results on AIDS and IMDB (strategy two)

From the table above, we can see that FGSD and SF based models significantly achieve
higher accuracy scores than other models on AIDS. FEATHER and NetLSD based models
also demonstrate good performance. When we carefully look at their confusion matrixes, we
see that almost all classes reach similar high accuracy scores. Only a few classes that have
fewer samples respectively are indeed obtaining a slightly lower score (0.62 for class 3 in
FGSD-KNN(AIDS), 0.65 for class 9 in SF-MLP(AIDS), and 0.64 for class 13 in SF-
MLP(IMDB)).
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SF-MLP{IMDB)

o lolololoelolo] e

o Jolololo]lo] o

poois] o | ol ol o] o] o

0002 JOEEMoco7zfooo1sl o L ol o | o L o | o

o | o lecois ooosd o | o | ol o | o

ol o] o] o |ooas oossfooosdd o | o | o | o

ol o | o] o |ooony ol o] o

ol o]l o]l o] o ooo26] 0o | o

ol ol ol o] o o locos]ooss 0045 poooad o

ol ol o] o] o] o locozfooar

ol olololoelo]lo]oe
o lololololo]lo]o

4 5 6 7 & 8 W 1 12z 13 18 15

Figure 20 Confusion Matrix of SF-MLP(IMDB)
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Figure 22 Confusion Matrix of SF-KNN(IMDB)
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Figure 23 Confusion Matrix of FEATHER-MLP(IMDB)
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Figure 24 Confusion Matrix of FEATHER-DT(IMDB)
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Figure 25 Confusion Matrix of FEATHER-KNN(IMDB)
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Figure 26 Confusion Matrix of GL2Vec-KNN(IMDB)
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(2) Efficiency

The prediction time comparison of the two datasets is demonstrated in Table 8 and Figure 29.

Models Time on AIDS(s) | Time on IMDB(s)
MCS(Baseline) 244631.8242 18967.4739
FEATHER-KNN 77.3871 3.5382
FEATHER -DT 0.1003 0.0313
FEATHER-MLP 0.4094 0.0682
GL2Vec KNN | Computationally 7.5472
infeasible

GL2Vec -DT 0.1326 0.0201
GL2Vec-MLP 0.3459 0.0631
SF-KNN 78.1183 6.2201
SF -DT 0.0897 0.0156
SF-MLP 0.4418 0.0737
FGSD-KNN 593.0306 2.8504
FGSD-DT 0.1003 0.0106
FGSD-MLP 0.4748 0.0587
NetLSD-KNN 20.8463 2.7790
NetLSD -DT 0.1273 0.0175
NetLSD -MLP 0.3936 0.0526

Table 8 Time evaluation (strategy two)
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The comparison of prediction time on the two datasets is shown in Table 8 and Figure 29. All
approaches except GL2Vec-KNN have shown excellent efficiency on both datasets compared
to the exact MCS algorithm. Even the slowest FGSD-KNN is 412 times faster than the
precise MCS. Among them, the decision tree-based approached generally saving more time in
comparison with other proposed approaches while the KNN based algorithms always
consume more time. For instance, the SF-DT method is 870 times faster than the SF-KNN
and also obtain higher accuracy scores than SF-KNN on AIDS. Moreover, the SF-DT
approach achieves the highest accuracies (0.98 on AIDS and 0.88 on IMDB) and costs the
least and the second least time on two datasets (0.0897(s) on AIDS and 0.0156(s) on IMDB),
which performs the best among all proposes approaches. Apart from SF-DT, SF-KNN, SF-
MLP, FGSD-KNN, FGSD-DT, FGSD-MLP, FEATHER-KNN, FEATHER-DT also show
excellent performance on both datasets.

In conclusion, it is reasonable to use my proposed framework as a fast method to calculate
graph similarity. It works well on both strategies.
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6. Conclusion

6.1 Overview

In this work, a framework combining many state-of-the-art graph embedding methods and
simple machine learning algorithms is proposed to compute graph similarity efficiently. The
framework is designed very flexibly. The core idea is to make good use of a large number of
existed works in graph embedding and machine learning areas prompting the development of
traditional similarity computation. Some combinations of my proposed framework show
extremely satisfactory performance. Compared to the calculation of classical similarity metric
MCS, my proposed flamework runs very efficiently while preserving good accuracy.

6.2 Limitation and Future Work

Though my proposed framework has shown effectiveness and efficiency, there are several

limitations as follows.

(1) My proposed model can only measure simple graphs that are unlabelled, undirected, and
unweighted. Many graph applications are based on complex graphs that exist some
attributes on nodes or edges. For example, nodes of chemical compounds are labeled, and
edges of social networks can be weighted and directed. Therefore, it is beneficial to
extend my proposed framework.

(2) I only pick several entire graph embeddings methods and machine learning algorithms. It
will be fascinating to combine more techniques, such as node embedding methods and
graph attention mechanism, boosting, and bagging.

(3) Since computing the exact MCS or GED for a pair of large and complex graphs is
impossible, it will be promising to train the model on the approximate MCS or GED
algorithms between large graphs.

(4) My framework is designed to be adaptive to all sorts of similarity metrics theoretically. In
this paper, I only use MCS to test my framework. In the future, I can use GED or other
classical similarity metrics to test.

(5) My proposed framework is the combination of many state-of-the-art algorithms, and it
takes some time to complete feature extraction and model training stages. Thus, it will be
very promising and convenient to design a distributed version in the future.
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8. Appendices

Readme.txt
Statement.docx

—7.21-IMDBMulti

AIDS_Gra_Seq.csv
Compute_MCS_and_MCS_TIME.py
Data_Visualization.py
IMDB-Strategy1.py
IMDB-Strategy2.py
strategy?_time.csv

—dataset

—HTML Version for codes with Results
Compute_MCS_and_MCS_TIME.html
Data_Visualization.html
IMDB-Strategy1.html
IMDB-Strategy2.html

—mcs_result
—mcs_result_discrete
—7.28-AIDS
AIDS-Strategy1.py
AIDS-Strategy2.py
Gra_Seq.csv

—dataset

—dataset_net

—HTML Version for codes with Results
AIDS-Strategy1.html
AIDS-Strategy2.html

—mcs_discrete_result
—mocs_result
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