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Abstract

Open-set semantic segmentation aims to identify categories
that extend beyond the scope of the training data. Compared
to the conventional semantic segmentation, open-set seman-
tic segmentation constitutes a more practical and challenging
scenario. Nonetheless, prevalent open-set semantic segmen-
tation models predominantly incorporate extensive image-
text datasets and substantial network architectures. Although
the design enhances the comprehensive performance of these
models, it also intensifies their computational demand, mak-
ing them considerably challenging to train or fine-tune for
adaptation to task-specific applications or domains. In this
paper, we introduce a novel strategy called Mask Aware Do-
main Adaptation (MADA) for addressing open-set semantic
segmentation challenges. MADA investigates the similarities
between visual and text modalities in both the source and tar-
get domains, aiming to align all modalities efficiently with
few data and computational resources. This alignment sig-
nificantly enhances model performance in the target domain
while simultaneously maintaining open-set capacity. Exten-
sive experiments demonstrate the effectiveness and efficiency
of our approach. We consider MADA to be a practical solu-
tion for scenarios which require high target domain perfor-
mance as well as open-set flexibility capacity.

Introduction
Semantic segmentation classifies each pixel of a given im-
age with a specific semantic category or class. Open-set or
Open-vocabulary (Geng, Huang, and Chen 2020) Compared
to conventional semantic segmentation, open-set semantic
segmentation is a more challenging extension where the set
of possible semantic classes or labels is not predefined or
limited in the training phase. The open-set scenario offers
flexibility to machine learning models in handling unseen
inputs, enhancing adaptability and performance. It improves
model robustness and stability in real-world applications.
Previously, open-set scenarios were tackled through zero-
shot methodologies, using visual-text correlations to align
visual and language domains. However, this approach is lim-
ited by dataset quality and alignment to target applications.
Generally, the overall performance remains relatively low
for practical applications due to both the dataset and net-
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Figure 1: Concept of our Mask Aware Domain Adaptation
strategy. Mask proposals associated with the corresponding
features could be obtained from a pre-trained model. Then,
our approach aims to efficiently align mask proposals with
corresponding features from the target domain with signifi-
cantly limited data and computational requirements. The ba-
sic assumption is that similar masks in visual space should
share similar representations in feature space.

work capacity limitations (Xian et al. 2019; Bucher et al.
2019; Zhang et al. 2024).

In recent years, there have been significant improvements
in large language models (LLM) (e.g., BERT (Devlin et al.
2019) and GPT (Brown et al. 2020)) and foundation vi-
sion models (e.g., CLIP (Radford et al. 2021) and SAM
(Kirillov et al. 2023)), which demonstrate impressive per-
formance on open-set related tasks by mapping class spe-
cific text queries to image content. CLIP is a representative
work which is trained on web-scale image-caption pairs. It
effectively projects both visual and text signals to the same
feature space. X-Decode(Zou et al. 2023; Liu et al. 2023)
and Grounding DINO(Liu et al. 2023) integrate the LLM
as well as the foundation models to solve the pixel-level
segmentation problem. However, these approaches require
a large amount of computational resources in the training
and even fine-tuning phrases. For instance, one of the CLIP
model backbones (i.e., RN50x64) takes 592 V100 GPUs and
18 days to complete the training process. This scale of re-
source requirement is not feasible for most budget-sensitive
and task-specific applications.

Adapter-based parameter-efficient fine-tuning is a prac-
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Figure 2: Framework of our MADA approach. Image samples are set as inputs to raw segmentation models (e.g., SAN). Then,
both the visual masks as well as the corresponding feature representations are obtained. We assume the more similar of the
predicted masks compared with the ground truth, the more similar the feature representation is. To this end, MADA jointly
explores the similarities of masks and representations, aligning the shift in both source and target domains.

tical solution which utilizes a relatively small-scale train-
able network and a general size of training data to achieve
feasible model fine-tuning. In a semantic segmentation sce-
nario, Side Adapter Network (SAN) (Xu et al. 2023) pro-
vides a lightweight network structure which “attached” to a
frozen CLIP model. A semantic segmentation dataset (e.g.,
COCO) is used to train and enable the segmentation capac-
ity, while the natural CLIP model further enables the open-
set capacity. SAN only requires a single GPU running for
several hours which considerably reduces the resource re-
quirements. Although SAN significantly reduces training in-
tensity, there are still thousands of high-quality samples re-
quired to achieve elegant performance, which is still hard for
some data-sensitive applications.

In this paper, we proposed a Mask Aware Domain Adap-
tation (MADA) approach for an open-set semantic segmen-
tation scenario, the concept of MADA is shown in Figure 1.
Specifically, given limited target domain samples (e.g., 50
samples), MADA fully explores the correlations of the mask
proposals as well as the ground-truth masks, a similar strat-
egy is also conducted in feature space. All these correlations
are jointly optimized to obtain a simple but effective projec-
tion and directly deployed to raw models. Specific designed
constraints are further proposed which preserves the open-
set capacity of the raw model. Figure 2 illustrates the frame-
work of the MADA model. In this way, we are able to use
remarkably few samples to considerably improve the overall
performance in the target domain. The main contributions of
this work are listed below:
• A Mask Aware module is proposed, which jointly con-

siders the mask similarity in visual space as well as the
feature similarity in feature space.

• Structural consistency constraints are proposed which
balance the target-specific focuses and the generalization
for open-set scenarios.

• An efficient optimization solution is further derived
which vastly reduces the computational cost to obtain the
final results.

Extensive experiments demonstrate the effectiveness and ef-
ficiency of our MADA approach, which shows its feasibility
for practical deployments in a wide range of applications.

Related work

Domain Adaptation

In many real-world scenarios, it is often expensive or im-
practical to collect large-scale labelled data for task-specific
applications. The goal of domain adaptation is to develop
methods that can leverage knowledge from a source domain
where labelled data is abundant and transfer this knowledge
to a target domain with limited or no labelled data. The chal-
lenges in domain adaptation arise from the differences in the
distribution of the data between the source and target do-
mains. The key is to explore methods that can effectively
align the source and target domains to mitigate the neg-
ative impact of distribution shifts on model performance.
Various strategies have been proposed to solve these chal-
lenges. For unsupervised domain adaption scenarios where
only samples from the target domain are available without
labels, (Tzeng et al. 2017) employs adversarial strategies
to align domain features, where an adversarial network is
used to distinguish between source and target domains. For
semi-supervised domain adaption, (Yan et al. 2022) regu-
larizes consistency across different views of target domain
samples by aligning domains using a prototype-based op-
timal transport method, enhancing feature representations
with a classwise contrastive clustering loss, and improving
prediction accuracy through consistency-based self-training.
(Zhao et al. 2021) enhances the source-target per-class sep-
aration before domain adaptive feature embedding learning
to alleviate the negative effect of domain alignment on few-
shot learning. More related interesting works include zero-
shot domain adaption(Jhoo and Heo 2021; Lengyel et al.
2021), one-shot domain adaption(Luo et al. 2020), and open-
set domain adaption(Jing, Liu, and Ding 2021; Bucci, Logh-
mani, and Tommasi 2020).

However, most existing studies either assume that most
source categories and the target categories are expected to
be identical, or there should be no unseen categories in the
testing phase. This setting makes it them hard to conduct
domain adaptation while still preserving generalize on open-
set scenarios.



Open-set Semantic Segmentation
Semantic segmentation classifies each pixel of a given im-
age with a specific label. In traditional (i.e., close-set) se-
mantic segmentation, models are trained based on the fixed
set of classes. However, in open-vocabulary semantic seg-
mentation, the model is not restricted to a predefined set
of classes and is capable of discovering and assigning la-
bels to regions that may not have been seen during train-
ing. Open-set or Open-vocabulary semantic segmentation is
a more practical and challenging extension. More advanced
algorithms and powerful models in both language and vi-
sual domains (Fu et al. 2023) are required to achieve this
goal. ZS3Net (Bucher et al. 2019) combines a segmenta-
tion model with a method to generate visual representa-
tions from semantic word embeddings. ZS3Net could han-
dle pixel classification tasks of both seen and unseen cate-
gories. X-Decode (Zou et al. 2023) proposed an advanced
decoder which decodes pixel-level classification results via
arbitrary visual and query inputs. Grounding-DINO (Liu
et al. 2023) performs visual-language modality fusion at
multiple stages, including feature enhancement, language-
guided query selection, and cross-modal decoders on ob-
ject detection tasks. Grounding-SAM combines the capac-
ity of DINO with the high precision segmentation model,
SAM (Kirillov et al. 2023), to achieve higher performance.
DINO-V2 (Oquab et al. 2023) explores multiple existing
approaches to scale the pre-training in terms of data and
model size for more robust visual feature learning. CLIP-
(Radford et al. 2021) learns the visual-language correlations
from web-scale visual-text pair training data. CLIP is able to
project both visual and text data into the same feature space.
SAN(Xu et al. 2023) utilizes a pre-trained vision-language
model and treats semantic segmentation as a region recogni-
tion problem. By attaching a side network to a frozen CLIP
model, the SAN framework enables the reuse of features.

Although these models achieve elegant performance for
open-set semantic segmentation, all the models still require
considerable high-quality training data for either training or
fine-tuning which cannot effectively and efficiently adapt to
task-specific applications with limited resources.

Our method
Our MADA approach contains two main modules associated
with an effective and efficient optimization solution. The de-
tails are introduced below:

Mask Aware Correlation Learning
Given an image I ∈ Rh×w×3 to raw segmentation model,
we can obtain the mask proposal M ∈ Rh×w×nm as well as
the corresponding visual feature vectors fI ∈ Rd×nm of the
proposed masks. h and w are the image height and width,
nm is the number of mask proposals, d is the dimension of
the embedded visual feature. Assume N images are used in
our learning phrase, by concatenating all the embedded vi-
sual feature together, we can obtain the visual feature matrix
F ∈ Rd×nf , where nf = nm ·N . In our approach, we aim
to align the feature as well as the text space as efficient as
possible. To this end, a liner project P ∈ Rd×d is proposed,

which is used to project embeddings into a modified space.
The equations are shown below:

F̂ = PF, (1)

where F̂ is the projected features.
To obtain the similarity scores between visual and text

embeddings, we further infer the text encoding matrix, E ∈
Rd×nl from the target label list, where nl is the label number
of the target dataset. Since CLIP model is able to project
both visual and text data input the same feature space, to
this end, E and F share the same feature space as well as
the dimension number d. Thus, the cosine similarity could
be obtained by the equation below:

sij =
f⊤
i · ej

∥fi∥ · ∥ej∥
, (2)

where fi ∈ Rd, ej ∈ Rd denote the i-th and j-th feature
vectors from F and E. ∥fi∥ and ∥ej∥ are their correspond-
ing norms, and sij is the cosine similarity of fi and ej . By
extending Eq.(2) to a matrix format, we can have:

S = F̂E⊤ = PFE⊤, (3)

where S ∈ Rnl×nf are the similarity score matrix which
denotes the similarity of each pair-wise visual feature as well
as text encoding.

As introduced in the above section, not all visual and tex-
tual features are related. Our principle assumption is that
the similarities of the mask proposal compared with ground-
truth is, the similar these feature representations supposed
to be. More specifically, the basic goal of this module is to
align the features with high correlation proposals while ig-
noring the other mismatched proposals. To achieve this, ob-
taining the similarity of two pair-wise visual masks is cru-
cial. The basic idea is an IoU (Intersection over Union)-like
strategy which is calculated by dividing the area of intersec-
tion between two masks by the area of their union. The value
ranges from 0 to 1 which indicates from no overlap to per-
fect overlap. However, we consider this strategy cannot fully
reflect the correlations between visual and textural domains.
First, the sizes of neither mask proposals nor the ground-
truth masks are ignored, while this information is important
for aligning the intensity level of the visual features. Second,
due to the sparsity of the mask categories in each image sam-
ple, assigning the 0 weights could easily cause unpredictable
optimization results.

To this end, our mask-aware approach includes both the
IoU-like calculation as well as size and non-label situation
together. The overall equation is shown below:

c =


mspred∩mgt

mspred∪mgt
e
α

spred
ssimage , mspred ∩mgt > 0,

−λ · e
α

sspred
ssimage , mspred ∩mgt = 0,

(4)

where c is the mask-aware of the correlation score of a given
mask proposal mpred and the ground-truth mask mgt, spred
and simage are the corresponding sizes, α and λ are the
trade-off parameter which tunes the scales of each term.
More specifically, when there are overlaps compared with



ground truth, both the IoU-like and size ratio will be used
to tune the contribution to overall correlation scores. If there
are no overlaps with ground-truth masks, a minor penalty
weight would be involved to stabilize the learning proce-
dure.

Given ci ∈ Rnl which is the correlation vector of a single
mask, and sj ∈ Rnl is similarity score in feature space, we
could obtain the overall weight by sum them up:

vij = c⊤i sj , (5)
To get the overall scores from the entire samples, we sum all
vij together and our goal is to optimize P which makes the
overall similarity scores are greater as possible. The equa-
tion is shown as below:

max
P

Tr(CE⊤PF ), (6)

where Tr(·) denotes the trace of a matrix, which is the sum
of elements on the main diagonal. C ∈ Rnl×nf is the mask
correlation matrix where each element cij denotes the simi-
larity scores of all the training samples.

Structure Consistent Mapping
We consider Eq.(6) is the major objective of our approach.
However, it has a naı̈ve solution which is assigning P are
greater as possible. In addition, due to the sparsity of the
ground-truth masks associated with the limited number of
training samples in our design, it is easily cause overfitting if
we only solve Eq.(6). Moreover, we still want to preserve the
model generalization for open-set performance. To this end,
a few structure consistent constraints are proposed which are
deployed to illuminate above mentioned issues. Our final ob-
jective which is shown below:

max
P

Tr(CE⊤PF )− µ1∥P − I∥2F − µ2∥P∥2F, (7)

where I ∈ Rd×d is an identity matrix, ∥ · ∥2F is the 2-norm.
∥P − I∥2F limits the variations of P compared with the iden-
tity matrix, which is able to control the structural consis-
tency and improve the generalization flexibility for other
open-set inputs. ∥P∥2F controls the overall scales of projec-
tion P . µ1 and µ2 are trade-off parameters which balance
the final objective and the constraints.

Optimization
Deploying iterative optimization (e.g., backpropagation) is
a popular solution. However, it requires extra computational
cost and the iteration results are highly dependent on the
learning parameters (e.g., learning rate and batch size) which
is not the best solution for the model. Considering only one
variable (i.e., P ) in the final objective function Eq.(7). To
this end, we derived a straightforward and efficient solution.
Specifically, Due to the basic roles of matrices, we have
tr(CE⊤PF ) = tr(FCE⊤P ). And we let L represent the
value of Eq.(7), then we can obtain:

L = Tr(FCE⊤P )− µ1∥P − I∥2F − µ2∥P∥2F, (8)
then we obtain the derivation of L with respect of P . The
equation is shown below:

∂L
∂P

= (FCE⊤)⊤ − 2µ1(P − I)− 2µ2P, (9)

To get the maximin value of Eq.(8), we assign the derivation
of L to zero. The equation is (FCE⊤)⊤ − 2µ1(P − I) −
2µ2P = 0, and we eventually obtain the explicit solution of
P which is shown below:

P =
(FCE⊤)⊤

2(µ1 + µ2)
+

I

1 + µ2

µ1

. (10)

From Eq.(10), we can see that the solution of the final ob-
jective function Eq.(7) could be simple and straightforward.
It is an explicit solution which only needs to be calculated
once without further iteration. By the model design as well
as the proposed solution, we could achieve effective and ef-
ficient domain adaptation in an open-set semantic segmen-
tation scenario.

Experiments
In this section, we first give a brief introduction to the
datasets and the evaluation metric used in our experiments.
Then we present the implementation details of our proposed
approach. Finally, we compare our results with various state-
of-the-art models and conduct ablation studies to evaluate
the effectiveness of different components of our proposed
approach.

Experimental setup
Dataset For fair comparison, five classical and widely
used semantic segmentation datasets are evaluated in our ex-
periments. The brief introductions are listed below:
• ADE20K-150 (Zhou et al. 2017) consists of 20,000 train-

ing images and 2,000 validation images and covers a
wide range of scenes and contains annotations for a total
of 150 classes.

• ADE20K-847 (Zhou et al. 2017) shares the same images
as ADE20K-150 but includes a larger set of annotated
classes (847 classes), making it challenging for open-
vocabulary semantic segmentation.

• Pascal Context59 (Mottaghi et al. 2014) is a scene un-
derstanding dataset that comprises 5,000 training im-
ages, 5,000 validation images, and a total of 59 annotated
classes.

• Pascal Context-459 (Mottaghi et al. 2014) shares the
same images as Pascal Context-59 but offers a larger set
of annotated classes (459 classes). It is widely utilized
for open-vocabulary semantic segmentation tasks.

• Pascal VOC (Everingham and Winn 2012) includes 20
classes of semantic segmentation annotations, with the
training set comprising 1,464 images and the validation
set containing 1,449 images.

Baseline methods Several state-of-the-art benchmarks are
evaluated in our experiments. The brief introductions are
listed below:
• SimSeg† (Xu et al. 2022a): A representative work of

two-stage pixel-level semantic segmentation tasks, with
the first stage obtaining mask proposals and the second
stage performing open-vocabulary predictions based on
CLIP model.



Table 1: Performance comparison with state-of-the-art methods.

Method VL-Model Training Set ensemble. ADE-847 PC-459 ADE-150 PC-59 VOC

SimSeg ECCV’22 CLIP ViT-B/16 COCO no. 7.0 8.7 20.5 45.9 88.1
SimSeg† CVPR’23 CLIP ViT-B/16 COCO yes. 6.9 9.7 21.1 52.2 92.3
OvSeg CVPR’23 CLIP ViT-B/16 COCO yes. 7.1 11.0 24.8 52.7 92.5
SAN CVPR’23 CLIP ViT-B/16 COCO no. 10.1 12.6 27.5 53.8 94.0

MADA (Ours) CLIP ViT-B/16 COCO + 1% ADE-150 no. 10.2 14.1 27.9 54.2 94.3
MADA (Ours) CLIP ViT-B/16 COCO + 1% VOC no. 10.2 14.2 28.0 54.2 94.4

MaskCLIP ECCV’22 CLIP ViT-L/14 COCO no. 8.2 10.0 23.7 45.9 -
SimSeg† CVPR’23 CLIP ViT-L/14 COCO yes. 7.1 10.2 21.7 52.2 92.3
OvSeg CVPR’23 CLIP ViT-L/14 COCO yes. 9.0 12.4 29.6 55.7 94.5
SAN CVPR’23 CLIP ViT-L/14 COCO no. 12.4 15.7 31.9 57.7 94.6

MADA (Ours) CLIP ViT-L/14 COCO + 1% ADE-150 no. 12.8 16.6 31.9 57.8 95.6
MADA (Ours) CLIP ViT-L/14 COCO + 1% VOC no. 12.8 16.6 31.9 57.6 95.2
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Figure 3: t-SNE visualization of the visual features. (a) de-
notes features extracted by SAN and (b) denotes features
learned by our proposed MADA. Different colours represent
different predicted categories. From the results, we can ob-
serve that our MADA achieve more distinguishing features
between different compared with SAN.

• MaskCLIP (Ding, Wang, and Tu 2022): MaskCLIP rep-
resents a Transformer-based method that employs mask
queries in conjunction with the ViT-based CLIP back-
bone for executing semantic segmentation and object in-
stance segmentation.

• OvSeg (Liang et al. 2023): Due to the unsatisfac-
tory mask proposal predictions of the pre-trained CLIP
model, OvSeg performs mask prompt tuning with
masked images and corresponding texts.

• SAN (Xu et al. 2023): SAN improves the heavy mask
generator in MaskCLIP and OvSeg by decoupling mask
recognition and mask prediction.

Evaluation In our experiments, we perform standard se-
mantic segmentation metrics(Xu et al. 2023; Ghiasi et al.
2022; Xu et al. 2022b), i.e.the mean of class-wise intersec-
tion over union(mIoU) as metric to evaluate the performance
of our model. mIoU is the average IoU over all classes. It
takes the IoU value for each class, sums them up and then
divides them by the number of classes. By taking the mean
IoU over all classes, it ensures that all classes are considered
equally, regardless of how often they appear in the dataset.

Implementation
We directly extract 512/768-dimensional mask proposal fea-
tures and 512/768-dimensional word features from CLIP
ViT-B/16 and CLIP ViT-L/14 SAN (Xu et al. 2023) models
respectively to train. For each of the five datasets, a selection
of different parameters of µ and the number of training im-
ages are chosen for training and further result comparison.
The parameter sensitivity will be discussed in the following
sections. All the training of our method is completed on a
laptop with an Inter i7-8700 CPU and 32G memory. For a
fair comparison, we test SAN models and our approach un-
der the same environment: single RTX4090 GPU, i9-13900F
CPU, 128G RAM, PyTorch 1.11.0, and CUDA 11.3.

Performance
Quantitative performance: Table 1 shows a quantitative
comparison of our MADA with four state-of-the-art bench-
marks. It can be seen that our MADA clearly surpasses all
these methods, especially on PC-459 dataset under the same
setting with an average of +0.6% mIoU for CLIP ViT-B/16
with only 100 training samples, which is only 1% from VOC
training set. The results demonstrates the significant data us-
age efficiency of our MADA approach.
Feature Distribution Visualization: To further illustrate
the feature distribution differences, t-SNE1 is used for vi-
sualization and the result is shown in Figure 3, where dif-
ferent colors denotes different categories. From Figure 3,
we observe that the feature distributions across different
classes are more distinguishing compared with raw SAN
features. This visualization explicitly reveals strong capac-
ity of MADA for learning from target domains.
Parameter Sensitivity Analysis: We consider the training
number and the first hyper-parameter µ1 are crucial to deter-
mine MADA’s performance. To this end, we analyze the pa-
rameter sensitivity and the results are illustrated in Figure 4,
where we evaluated the training number from 10 to 200 on
VOC dataset, and µ1 from 20 to 2000. From Figure 4, we
observed that the MADA could achieve high performance
even with 50 samples which is only 0.5% of the VOC train-
ing set. It demonstrates the efficient data usage of MADA.

1https://lvdmaaten.github.io/tsne/
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usage of MADA is efficient which achieves improvements
with limited samples, and MADA is parameter-insensitive
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Figure 5: Time consumption of the optimization phrase
of our MADA approach, based on both CLIP ViT-
B/16 and CLIP ViT-L/14 respectively on VOC dataset.
MADA optimization solution achieves considerable effi-
ciency (millisecond-level) compared with other optimiza-
tion methods.

Moreover, MADA is parameter-insensitive which have sta-
ble performance in a wide range of parameter µ1 setup, it
proves the robustness of MADA to different parameter/sam-
ples inputs.
Computational Efficiency Analysis: To evaluate the solu-
tion efficiency of MADA, we evaluate the time consump-
tions of solving Eq. (7) in different model/dimensional size
and training numbers scenario, and the results are illustrated
in Figure 5. Specifically, the both CLIP ViT-B/16 and CLIP
ViT-L/14 backbones with different feature dimensions, as
well as training numbers from 5 to 200 are tested. From Fig-
ure 5 we can see MADA is able to obtain results in less than
10 ms. This is due to our efficient solution and the parallel
natural of matrix calculation in hardware.
Case Studies: Figure 6 illustrates the case studies of the seg-
mentation results. Specifically, we use the same vocabulary
and images from ADE20k-847 to test the model trained on
COCO and 100 samples on ADE20k-150 dataset, and we
can see that the “floor” is correctly classified by our MADA
model but is misclassified as “rug/carpet/carpe” by SAN

Figure 6: Oualitative examples demonstrating the effective-
ness of MADA in improving mask proposal classification
performance on ADE20k-847. The second column shows
SAN inference results. We can see that MADA(third col-
umn) can improve semantic segmentation compared with
the ground truth (fourth column). The colour setting is the
same for all mask classes.

model. This case study further demonstrates the efficiency
of MADA data usage.

Conclusion
Our MADA framework addresses open-set semantic seg-
mentation by efficiently adapting the model to the target
domain using limited training samples. It effectively pre-
serves the model’s open-set capacity and performance. Our
approach includes a Mask-Aware module to explore correla-
tions between visual/mask space and feature space, a Struc-
ture Consistent module for stabilizing learning and main-
taining generalization, and an efficient optimization solu-
tion. Extensive experiments verify the effectiveness of our
approach.
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